
Cookie Break
I made them, so don’t expect too much.

CS 61A Discussion 1
Control[, Environment
Diagrams,] and HOF

THINGS OF POSSIBLE INTEREST

> HW1 has been released. There will be a HW
party on Monday from 6:30-8:30pm in 247
Cory.

> MT1 is on Friday 2/17 from 7-9pm.

> The calendar and syllabus have been posted
on the website. Please read through the
syllabus!

MORE THINGS

> The Hog project has been released. There
will be project parties next week on Tuesday
and Wednesday from 6:30-8:30pm in 247
Cory.

> Water is wet.

Quiz…!

Control is what
prevents your
programs from simply
executing every line in
top-down order

Without control flow, the code
on the right would be run as

1. owen, mad = 0b01, 0x01
2. if owen is mad:
3. participate_in_class()
4. else:
5. participate_in_class()

as opposed to actual behavior,
where the else clause is
ignored.

Control Structures
IF, ELIF, ELSE

if <boolean expression>:

 <do this>

elif <boolean expression>:

 <do THIS>

else:

 <do THIS!!>

You can have as many or as few elif clauses
as you want. You can have at most one else
clause.

If one of the boolean expressions evaluates
to True, its indented suite of statements is
executed and all of the subsequent
elif/else’s (if there are any) are skipped.

WHILE LOOPS

while <boolean expression>:

 <do stuff>

When you evaluate a while loop, execution
proceeds as follows:

1. Check <boolean expression> and see if
it is true.

a. If it isn’t, skip all of the lines
indented under the while.
(Continue on with the rest of the
program.)

b. If it IS, execute all of the lines
indented under the while. Then
go back to step 1.

Place your screenshot here

Who is this
fancy-looking
man?

George Boole’s Legacy

A boolean expression is an expression that is equivalent to either True or False.
This can be any value (or combination of values), because...

...values in Python are either “true”-y or “false”-y.

▷ False values: False, 0, [], ‘’, None, (), {} (“empty” values, basically)
▷ True values: everything that isn’t a false value

You can turn values into more complex boolean expressions by using the and, or,
and not operators.

Boolean Operators

And

[PRIORITY LEVEL 2]

True iff all of its expressions
are true. (False iff at least
one of its expressions is
false.)

Short-circuits if it hits a false
value. Always returns the
last thing it evaluated.

>>> 1 and []

[]

>>> 1 and [3] and 7

7

Or

[PRIORITY LEVEL 3]

True iff at least one of its
expressions is true. (False iff
all of its expressions are
false.)

Short-circuits if it hits a true
value. Always returns the
last thing it evaluated.

>>> 1 or []

1

>>> None or 0 or ()

()

Not

[PRIORITY LEVEL 1]

True iff its expression is
“false”-y. False if its
expression is “true”-y.
(Returns either True or
False.)

>>> not (1 and [])

True

>>> not (1 or [])

False

A Quick Note
“Priority” refers to grouping, not evaluation order!

Studies show that 50% of people
who successfully answer this
question also pass the class

What does this evaluate to?

>>> a, b, c = 0, 1, 1
>>> b and not a and b - c or not c * a and b / a or b + c

Studies show that 50% of people
who successfully answer this
question also pass the class

What does this evaluate to?

>>> a, b, c = 0, 1, 1
>>> b and not a and b - c or not c * a and b / a or b + c
ZeroDivisionError: division by zero

* Via priority, the expression is equivalent to
(b and (not a) and (b - c)) or
((not (c * a)) and (b / a)) or
(b + c)

Environment Diagrams
should be free points on the exams. You don’t have to be
creative or clever. You just have to know and follow the
rules… albeit mechanically and without error. Still, there
aren’t that many rules! (Hint: they’re all in the textbook!)

An environment
diagram a day keeps
the exam grades okay!

The best way to ensure your free points is
through practice (as with anything else).

Place your screenshot here

Technically speaking,
an environment diagram is just a record of all
name/value bindings.

Drawing a diagram
1. MAKE A GLOBAL FRAME

This is the frame from which all of the other
frames are derived.

2. GO THROUGH THE PROGRAM,
UPDATING BINDINGS AS NECESSARY

And that’s it. Just update them right.

ASSIGNMENT STATEMENTS [x = 5]

Evaluate the expression(s) on the
right-hand side of the = sign. Then bind the
value(s) on the right to the name(s) on the
left, in the current frame.

FUNCTION DEFINITIONS [def foo(...)]

Create a new function object, written as
func <fn name>(<params>) [p=<parent>].
Bind it to the name <fn name> in the current
frame. The parent is just the current frame.

FUNCTION CALLS [foo(...)]

[Step 1: evaluate the operator (the function),
then evaluate the operands (the arguments) in
order.] Create a new frame. Always! (And only
when there’s a function call, incidentally)!
Title the frame f<curr #>: <intrinsic fn
name> [p=<parent>]. The intrinsic name and
the parent should be obtained from the
appropriate function object on the right. Bind
the arguments to the formal parameter names
in the newly created frame. Finally, run
through the body (also in the new frame).
When the function returns, go back to
whichever frame you were in before.

LOOKUP [somevar]

Check the current frame for the name you’re
looking for. If it’s there, use its value. If not,
keep following the chain of parents and doing
the same thing. If you get to the global frame
and the name still isn’t there, it’s an error.

(One exception)
FUNCTION CALLS [foo(...)]

The only time you don’t make a new frame for a function call is when you’re calling a builtin
Python function (min, print, etc.). We don’t know how these are implemented, so we don’t add
their local frames to our environment diagrams.

If you encounter one of these calls, just assume that it works and continue executing the code.

Common Confusions

▷ Arguments are evaluated in the calling frame

▷ Everything on the right of an assignment statement
is evaluated before the assignment(s) actually
happen

▷ When titling a new frame, use the intrinsic name of
the function (just copy the name and the parent from the
right section of the diagram)

▷ If you have x = var, copy the value of var and put it
in x’s box. If the value of var is an arrow pointing to
a function, then x’s value should be an arrow
pointing to the same function.

Higher Order Functions
Functions as inputs / functions as return values

“
“You see, in Python functions are

first-class values” - John Locke

HOF v1: Functions as Inputs
(to Other Functions)

We can pass functions as arguments into function calls. This counts as first-class
function manipulation, aka “higher order functions.”

>>> from operator import mul

>>> def foo(x, f):

... return f(f(x, x), f(x, x))

...

>>> foo(5, mul)

625

Why do this? Perhaps we want to write a function that is flexible and can perform
operations using a broad range of other functions – functions we don’t necessarily
know ahead of time.

HOF v2: Functions as Outputs
(of Other Functions)

We can also return functions. Why do this? Perhaps we want the returned function to use
values that were part of the original (returning) function, or our program requires a
dynamically generated function (something we can use over and over to compute new values).

>>> def foo(x):

... def bar(y):

... return not x % y

... return bar

...

>>> is_factor = foo(400)

>>> is_factor(20)

True

>>> is_factor(21)

False

Thanks for coming!
Until next time...

